Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37889659

RESUMO

Mountains harbor a significant number of the World's biodiversity, both on tropical and temperate regions. Notably, one crucial gap in conservation is the consideration of historical and contemporary patterns influencing differential distribution in small mammal mountain species and how climate change will affect their distribution and survival. The mice Peromyscus mexicanus species group is distributed across mountains in Guatemala-Chiapas and Central America, which experienced significant effects of glacial and interglacial cycles. We determined phylogeographic and demographic patterns of lowlands and highlands mountain lineages, revealing that the radiation of modern P. mexicanus lineages occurred during the Pleistocene (ca. 2.6 mya) along Nuclear Central America. In concert with climatic cycles and the distribution of habitats, lowland and highland lineages showed recent population size increase and decrease, respectively. We also estimated the current and future distribution ranges for six lineages, finding marked area size increase for two lineages for which vegetation type and distribution would facilitate migrating towards higher elevations. Contrastingly, three lineages showed range size decrease; their ecological requirements make them highly susceptible to future habitat loss. Our findings are clear evidence of the negative impacts of future climate change, while our ability to manage and conserve these vulnerable ecosystems and mountain species is contingent on our understanding of the implications of climate change on the distribution, ecology, and genetics of wildlife populations.

2.
An Acad Bras Cienc ; 94(1): e20211167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35107518

RESUMO

We provide a map and shapefile of the 57 biogeographic provinces of the Neotropical region. Recognition of these provinces is based on their endemic species, but their delimitation on the map is based on ecoregions combining climatic, geological, and biotic criteria. These provinces belong to the Antillean, Brazilian and Chacoan subregions, and the Mexican and South American transition zones. We provide a vector file of the biogeographical regionalization by converting the map into a polygon shapefile and a raster file with all provinces.


Assuntos
Geologia , Brasil , México
3.
Zootaxa ; 4277(2): 277-279, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-30308652

RESUMO

We provide a map of the 14 biogeographic provinces of Mexico based on the ecoregions recognized for the country, which combine climatic, geological and biotic criteria. These provinces belong to the Nearctic region (Californian, Baja Californian, Sonoran, Chihuahuan Desert and Tamaulipas provinces), Neotropical region (Pacific Lowlands, Balsas Basin, Veracruzan and Yucatán Peninsula provinces) and the Mexican transition zone (Sierra Madre Occidental, Sierra Madre Oriental, Transmexican Volcanic Belt, Sierra Madre del Sur and Chiapas Highlands provinces). In order to facilitate future biogeographic analyses, we provide a file of the biogeographical regionalisation of Mexico by converting the map into a polygon shapefile and a raster file with all provinces. We also separately provide each of the provinces in vector and raster format. All the maps are in geographical and Lambert Conformal Conic projections.


Assuntos
Biodiversidade , Geografia , Animais , México
4.
PLoS One ; 8(11): e80531, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260411

RESUMO

Many ectotherms have altered their geographic ranges in response to rising global temperatures. Current range shifts will likely increase the sympatry and hybridisation between recently diverged species. Here we predict future sympatric distributions and risk of hybridisation in seven Mediterranean ischnurid damselfly species (I. elegans, I. fountaineae, I. genei, I. graellsii, I. pumilio, I. saharensis and I. senegalensis). We used a maximum entropy modelling technique to predict future potential distribution under four different Global Circulation Models and a realistic emissions scenario of climate change. We carried out a comprehensive data compilation of reproductive isolation (habitat, temporal, sexual, mechanical and gametic) between the seven studied species. Combining the potential distribution and data of reproductive isolation at different instances (habitat, temporal, sexual, mechanical and gametic), we infer the risk of hybridisation in these insects. Our findings showed that all but I. graellsii will decrease in distributional extent and all species except I. senegalensis are predicted to have northern range shifts. Models of potential distribution predicted an increase of the likely overlapping ranges for 12 species combinations, out of a total of 42 combinations, 10 of which currently overlap. Moreover, the lack of complete reproductive isolation and the patterns of hybridisation detected between closely related ischnurids, could lead to local extinctions of native species if the hybrids or the introgressed colonising species become more successful.


Assuntos
Clima , Hibridização Genética , Insetos/fisiologia , Animais , Biodiversidade , Ecossistema , Feminino , Geografia , Masculino , Modelos Teóricos , Dinâmica Populacional , Isolamento Reprodutivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...